Среди радиолюбителей мультиметр часто называют тестером. Но правильней будет все-таки «мультиметр», так как он имеет дополнительные функции, и помимо напряжения и силы тока измеряет другие показатели в широком диапазоне. У современного прибора устройство довольно сложное, но в принципах работы интересно разобраться, чтобы понимать, как происходят измерения.
Классификация
По представлению измеряемых показателей мультиметры разделяют на аналоговые (стрелочные) и цифровые. В аналоговых тестерах отклонение стрелки на градуированной шкале показывает результат измерения. Цифровые мультиметры информацию отображают в виде цифр на жидкокристаллическом или подобном ему экране.
Принципиальная схема мультиметра со стрелкой выглядит проще, чем у его собрата, поэтому зачастую для цифрового прибора в инструкции предоставляют функциональную или структурную схему.
По конструкции их можно так же разделить на два вида:
- стационарные;
- мобильные (карманные).
Наиболее простые – это стрелочные карманные мультиметры. Они представляют собой микроамперметр с набором высокоточных резисторов большого и малого номинала, а для измерения сопротивления имеют встроенный источник питания.
Стационарные мультиметры работают от сети переменного или постоянного тока.
Как правило, это высокоточные приборы со сложной схемой, используемые в лабораториях и различных сервисных центрах.
Дополнительно они имеют разъемы типа RS232, которые позволяют подключаться к компьютерам и создавать на их базе информационно-измерительные системы. В специализированных промышленных комплексах их используют в виде отдельных блоков совместно с другой аппаратурой.
Кроме измерения основных параметров тока в них закладывают еще другие возможности. Некоторые могут измерять температуру, частоту, скважность, выступать в роли генератора синусоидальных или прямоугольных сигналов.
Устройство мультиметра стационарного типа таково, что в нем используются достоинства аналоговых и цифровых приборов. Например, управляемый микропроцессором жидкокристаллический экран, представляет информацию в удобном для восприятия виде. Кроме цифровых показаний, он выдает изображение шкалы и стрелки в соответствующем сигналу положении, как на аналоговом мультиметре.
Простейшая схема
На рисунке представлена принципиальная схема мультиметра. Это самый простой вариант. Как видим, он имеет три шунтирующих резистора номиналами 0,5 Ом, 4,6 Ом и 46,3 Ом.
В режиме миллиамперметра он обеспечивает, при подключении к соответствующим выводам, измерение силы тока в трех диапазонах: 300 мА, 30 мА и 3 мА. Шунты необходимы для защиты мультиметра и измерения тока в различных диапазонах.
Добавочные резисторы номиналом 950 Ом, 10 кОм и 100 кОм предназначены для измерения напряжения в трех диапазонах: 3 В, 30 В и 300 В. Сопротивление измеряется при подсоединении к контактам Rx измеряемой нагрузки.
Перед замером, при закороченных контактах измерительных щупов, переменным резистором R3 выставляется ноль на шкале измерения сопротивления. Данный тестер предназначен только для измерения постоянного тока.
Для того чтобы он мог измерять переменный ток, в схему необходимо ввести выпрямительные диоды. Это связано с тем, что магнитоэлектрический механизм микроамперметра, в силу своего принципа действия, может измерять только постоянный ток.
Принципиальная схема мультиметра, если он стрелочный, меняется от прибора к прибору незначительно. Могут быть другие номиналы сопротивлений из-за использования различных микроамперметров, но суть не изменится. Поэтому ремонтировать их просто, в отличие от цифровых тестеров.
Структурная схема цифрового прибора
В настоящее время большинство мультиметров, выпускаемые промышленностью, являются цифровыми. Оно и понятно. Благодаря использованию современной элементной базы с большим входным сопротивлением, появилась возможность создавать многоразрядные точные аналогово-цифровые преобразователи электрического сигнала.
Это в свою очередь позволило уменьшить погрешность измерения, а применение цифровой индикации обеспечило легкое считывание информации.
В случае со стрелочными мультиметрами это затруднено, так как при погрешности 0,2% и выше прочитать точное показание будет практически невозможно из-за плотного расположения делений на шкале.
Принципиальная схема мультиметра, основанная на интегральных микросхемах сильно зависит от вида используемых микросхем, поэтому для разбора принципа работы прибора удобнее пользоваться структурной схемой, которая одинакова для всех цифровых тестеров.
На рисунке изображена структурная схема цифрового мультиметра. На ней видно, как происходят измерения постоянного и переменного токов, а также сопротивлений.
Аттенюатор и операционный усилитель
Аттенюатор – это устройство в схеме, уменьшающее входной сигнал в определенное количество раз для того, чтобы он находился в нормированном диапазоне, например, 0-1 мВ. В зависимости от конкретной реализации диапазон может быть другим.
Операционный усилитель очень чувствительный и имеет большой коэффициент усиления. Он реагирует на единицы микровольт на своем входе, а усиление позволяет выставлять от единицы до нескольких тысяч.
При этом у него огромное входное сопротивление, из-за чего он практически не вносит погрешностей. На его основе можно создать очень точные мультиметры и другие измерительные устройства.
Так вот, при поступлении на вход операционного усилителя напряжения с аттенюатора, он усилит его в конкретное число раз, и также не превысит допустимые пределы.
АЦП
На вход аналогово-цифрового преобразователя (АЦП) поступит сигнал, не превышающий диапазон преобразования.
Предварительное усиление требовалось, чтобы преобразователь мог произвести его оцифровку и вывести на цифровой индикатор.
Схемы аналогово-цифровых преобразователей весьма разнообразны, и некоторые из них выполнены в виде отдельной микросхемы, что очень удобно при создании компактных мультиметров.
Прецизионный выпрямитель и коммутатор
При измерении переменных токов дополнительно применяется прецизионный выпрямитель. Когда необходимо измерить сопротивление, то оно подключается к преобразователю, представляющего собой эталонный генератор тока с делителями.
Этот ток проходит через измеряемое сопротивление, на нем происходит падение напряжения. Это падение усиливается, оцифровывается и выводится на цифровой индикатор.
При любых измерениях сигналы поступают через коммутатор. Он может быть механическим или электронным. На автономных ручных мультиметрах используется механический переключатель.
Хотя принципиальная схема мультиметра цифрового типа не представлена, проанализировав устройство прибора, можно найти отличия между ним и аналоговым типом.
Стрелочные мультиметры, чтобы произвести измерение какого-либо параметра, преобразуют его в силу тока и затем только измеряют. А цифровые тестеры, используя преимущества операционных усилителей, их огромное внутреннее сопротивление, все входящие сигналы преобразуют в напряжение и потом только проводят измерения.
Основные обозначения
Большинство мультиметров выглядят как небольшие коробочки, в верхней части которых расположена шкала со стрелочным механизмом или жидкокристаллический экран. Обозначения на мультиметре практически одинаковы и не зависят от вида прибораи схемы. Так, ниже экрана располагается переключатель режимов измерения. Вокруг отображаются значки, характеризующие тип и диапазон измеряемой величины:
- OFF означает что, если переключатель режимов будет установлен напротив него, то прибор выключен;
- положение переключателя в секторе V означает измерение постоянного напряжения;
- значения 200m, 2000m, 20, 200, 1000 показывают пять диапазонов измерения от 200 милливольт до 1000 вольт;
- знак V~ информирует об измерении переменного напряжения, цифры 100 и 750 о пределах измеряемого напряжения в вольтах;
- сектор, охваченный белой линией, с символом A означает измерение постоянного тока;
- цифры 200µ, 2000µ, 20m, 200m и 10А показывают, в каком диапазоне происходит измерение, от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер или до 10 ампер;
- сектор с символом Ω и цифрами 200, 2000, 20k, 200k, 2000k означает измерение сопротивления в диапазонах от 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм;
- при положении переключателя на знаке hFE мультиметр будет тестировать транзистор, если вставить его выводы в гнезда расположенные ниже на отдельном разъеме;
- символ диода означает, что в этом положении переключателя осуществляется прозвонка.
С правой стороны имеются три гнезда. Верхнее, с цифрой 10А, используется при измерении постоянного тока до 10 ампер. Среднее применяется для измерения во всех остальных случаях. Нижнее гнездо для присоединения нулевого провода, рядом изображен знак заземления, как на схеме. Количество диапазонов и их пределы, типы измеряемых величин могут отличаться, но в основном будут совпадать.
На устройство и внешний вид влияют также и дополнительные возможности закладываемые производителем. Так, сейчас появились тестеры со встроенными токоизмерительными клещами. Они позволяют измерять ток без разрыва проводника, достаточно обхватить его клещами.
В комплект поставки, кроме мультиметра, входят щупы и инструкция по эксплуатации. В ней обычно даются принципиальная схема, технические характеристики, правила пользования прибором и требования по техники безопасности.