Как устроен молниеотвод

Молния – мощное проявление сил природы, с которым человек сталкивается с завидной регулярностью. Это электрический разряд, возникающий из-за взаимного трения потоков теплого воздуха с каплями воды облаков и с землей. Его энергия настолько велика, что он валит деревья, поджигает деревянные кровли, выводит из строя электроприборы и всю электропроводку. Для защиты от негативных последствий удара молнии устанавливают молниеотводы.

Устройство молниеотводов нельзя назвать сложным, однако при их строительстве надо руководствоваться принципами надежности, пожаробезопасности и соблюдать параметры, описанные в инструкциях.

История молниеотвода

Земля, по сути своей, представляет огромный конденсатор. Одна обкладка – поверхность планеты и всего, что на ней находится. Другая обкладка выполнена из свободных зарядов в атмосфере. Воздух в этой системе играет роль диэлектрика. Именно его пробой и представляет собой молнию.

Осознав суть молнии как электрического процесса, изобрел и разработал устройство первого молниеотвода Бенджамин Франклин. Талантливый физик не смог развить свой дар в науке из-за бурной политической деятельности, благодаря чему его портрет изображен на стодолларовой купюре.

Тесла понял, что молния ударяет в самую высокую точку, связанную с Землей, по причине наименьшей толщины диэлектрика (слоя воздуха). В результате серии проведенных опытов, воздушный змей стал первым молниеотводом в истории. В России еще раньше подобные эксперименты проводил Ломоносов совместно с другим физиком Рихманом.

Вообще, молниеотвод – это устройство, отводящее разрушающую энергию молнии от защищаемого объекта и рассеивающее ее посредством заземления. О значении молниеотводов знали много веков назад, наблюдая, как молнии попадают в высокие деревья, колонны и башни. Однако научные эксперименты и обоснованные выводы были сделаны только в XIII веке.

Части конструкции

В принципе, устройство любого молниеотвода подразумевает наличие трех составляющих.

Молнеприемник должен выдерживать напряжения в миллионы вольт, высокую температуру и существенное ударное воздействие (молния может расщепить крупное дерево).

Эту часть молниеотвода изготавливают из проводящего металла. Применяют стальную проволоку большого диаметра (10-12 мм), стальную полосу или пруток.

Токопровод, связывающий молниеприемник с заземлителем, выполняется из проводника, и должен выдерживать кратковременное протекание колоссальных токов. Производством токоотводов занимаются отечественные и зарубежные фирмы. Вместе с проводником они предлагают крепления, что значительно упрощает монтаж устройств.

Третья часть молниеотвода – заземляющее устройство (ЗУ), способствующее беспрепятственному растеканию тока в землю из токопровода.

Сюда же справедливо можно было бы добавить и основание, на котором собрана вся эта конструкция. Но обычно в его качестве выступают сами объекты защиты (здания, опоры ЛЭП и прочее), хотя устройство молниеотвода может предполагать его размещение как самостоятельной единицы на отдельном основании.

Для предотвращения коррозии элементы молниеотвода должны быть оцинкованы или хотя бы окрашены. Если применяется покраска, то часть заземлителя, находящаяся в грунте, не окрашивается.

Виды

В общем случае можно выделить следующие виды громоотводов, применяемых на практике:

  • наиболее распространенные, благодаря низкой стоимости и простому устройству, но оттого не менее эффективные, стержневые молниеотводы;
  • тросовые молниеотводы обеспечивают защиту протяженных объектов типа длинных строений или высоковольтных ЛЭП;
  • сетчатым молниеотводам, обладающим наибольшей эффективностью, отдают предпочтение в случае защиты особо важных объектов.

Стоимость сетчатого громоотвода весьма высока. Поэтому, несмотря на высокую степень защиты, такие устройства применяются крайне редко, когда молниезащита имеет особое значение. Тросовые и стержневые системы примерно равнозначны по эффективности, но из-за простоты в обслуживании и небольшой разницы в стоимости последние имеют приоритет в применении.

Отдельным видом молниеотводов является активные системы молниезащиты. Внешне они практически ничем не отличаются от стержневых устройств.

Разница лишь в том, что в молниеприемник (самый кончик) встраивается электронное устройство, способствующее генерации высоковольтных импульсов во время грозы. Создавая такую «приманку» для молнии, активные системы в буквальном смысле ловят ее. Устройство такого типа принято считать самыми эффективными.

Есть компании, освоившие производство молниеотводов на промышленной основе, но зачастую эти устройства, учитывая их простоту, делают самостоятельно.

Монтаж молниеприемника

Сразу следует оговориться, что требования ПУЭ предусматривают выполнение соединений между всеми частями молниеотвода исключительно сваркой. Если это невозможно, допускается резьбовое соединение болтами и гайками.

Площадь шайб, применяемых при резьбовом соединении, должна быть увеличена. Не допускается производить монтаж элементов системы скруткой проводов или какими-либо другими методами.

Разумеется, высоту молниеприемника, в основном определяющую его эффективность, необходимо максимизировать. Согласно инструкции РД, для обеспечения надежной защиты надо поднять громоотвод минимум на 3 м над поверхностью сооружения. Это касается стержневых устройств.

Высота прокладки тросового молниеотвода зависит от длины и высоты здания, конструкции заземлителя и удельного сопротивления грунта, может составлять 3-4 м. Для монтажа троса рекомендуется укреплять деревянные опоры на обоих коньках здания, а между ними натягивать тросовый громоотвод, если речь идет о коньковых крышах.

Конструктивные особенности сеточных громоотводов позволяют крепить такие устройства значительно ниже. В зависимости от шага сетки они могут быть расположены в десятке или нескольких десятках сантиметров от плоской кровли. Сетка с ячейками 6Х6 см может быть уложена непосредственно на поверхность крыши или даже под слой утеплителя, если он не горюч.

Токоотвод и заземлитель

Токопровод (токоотвод) это не менее важный элемент молниеотвода, чем молниеприемник или заземляющее устройство. Если молниеприемник должен иметь площадь поперечного сечения, равную 100 мм2 (пруток диаметром 12 мм), токоотвод, не испытывающий термической и ударной нагрузки, не может иметь диаметр менее 6 мм (ПУЭ).

Увеличенное сечение токоотвода, принимая во внимание возможную величину протекающего по нему тока, только приветствуется.

Заземляющее устройство молниеотвода чаще всего соединяется с заземляющим контуром всего здания. В случае стоящего отдельно устройства молниезащиты в качестве ЗУ используются металлические штыри, забиваемые или закапываемые в грунт.

Для улучшения проводимости иногда эти штыри объединяют в группы, сваривая из них конструкции прямоугольной формы при помощи стальной полосы. Но в любом случае требования ПУЭ регламентируют сопротивление между ЗУ и землей, которое не должно превышать 40 Ом при удельном сопротивлении почвы 1 кОм*м.

Все элементы молниеотвода должны быть надежно защищены от коррозионных разрушений. Наилучший вариант доиться этого состоит в использовании для элементов системы оцинкованной стали.

Зоны защиты

Схема зоны защиты одного отдельно стоящего стержневого молниеотвода представляет собой большой конус. Для громоотводов, не превышающих высоты 150 м, принимаются следующие габаритные размеры устройства:

  • для зоны, находящейся на уровне земли h0 = 0,85h; r0 = (1,1 – 0,002h)h; rx = (1,1 – 0,002h)(h – hx/0,85);
  • для зоны на уровне крыши, например: h0 = 0,92h; r0 = 1,5h; rx = h – 1,5(hx/0,92);

где h – высота молниеотвода; h0 – некоторая высота (обычно уровень крыши); rx – диаметр основания конуса на высоте h0.

Определившись с условными габаритами, можно использовать формулу:

h = (rx + 1,63hx)/1,5

для вычисления требуемых параметров. Если, например, известны rx и hx (требуемый радиус зоны защиты и заданная высота этой зоны), можно вычислить высоту одиночного стержневого молниеотвода, требуемую для надежной защиты h.

И, наоборот, при известных h и hx легко вычисляется радиус зоны rx и, сравнивая его с необходимым, делается заключение об эффективности устройства молниезащиты.

Расчет двойного стержня

Примерно те же действия проводят и при расчете двойного стержневого молниеотвода и, в принципе, группы таковых. Здесь лишь нужно учесть расстояние L, на котором штыри находятся друг от друга.

Построив круговые зоны защиты каждого из них, смотрят на их пересечение. Если все защищаемое пространство лежит в их пределах, значит, надежная защита обеспечена. По тому же сценарию можно определить зоны защиты разновысоких устройств.

Зона защиты тросового молниеотвода, точнее, ее основание имеет форму скругленного прямоугольника. Для одиночного устройства этого типа высотой h менее 150 м принимаются следующие допущения:

  • при h < 120 м h = hоп – 2;
  • при h < 150 м h = hоп – 3;

где hоп – высота опоры.

Тогда для зоны на уровне земли принимаются габариты:

h0 = 0,85h; r0 = (1,35 – 0,0025h)h; rx = (1,35 — 0,0025h)(h — hx/0,85).

Для зоны, находящейся на некоторой высоте hx, эти размеры задаются следующим образом:

h0 = 0,92h; r0 = 1,7h; rx = (h — hx/0,92).

Как и в случае со стержневым молниеотводом, тросовое устройство также имеет формулу, позволяющую определить любые его параметры по заданным, а именно:

h = (rx + 1,85hx)/1,7.

С ее помощью можно определить необходимую высоту устройства, по известным параметрам площади, нуждающейся в защите, и ее высоте расположения или провести обратную процедуру.

На самом деле, расчет зон защиты молниеотводных устройств немного сложнее. Описанные методы показывают лишь принципы, на которых он строится. Более подробную информацию можно без труда найти в специальной литературе.

Рейтинг
( Пока оценок нет )
Поделиться статьей в социальных сетях, чтобы не потерять:
Энциклопедия электроснабжения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: