Представить себе современную цивилизацию без электричества невозможно. Огромная часть углеводородов используется для генерации именно электроэнергии.
Однако электричество невозможно перевозить, как нефть или уголь. Для его транспортировки используют линии электропередачи (ЛЭП), обеспечивающие трафик электроэнергии большой мощности на необходимые расстояния. Приведение же параметров переданной по ним энергии к стандартам, свойственным ее потребителям, подразумевает использование трансформаторных подстанций, которые обеспечивают необходимое напряжение в сети. Таким образом, осуществляется питание всех электроустановок, начиная от лампочки в комнате и заканчивая промышленным оборудованием.
Для предотвращения травматизма обслуживающего персонала и тем более летальных исходов, учитывая высокий вольтаж, применяются заземляющие устройства воздушных линий и подстанций. Данная публикация ставит перед собой задачу разобраться в причинах их необходимости, а также конструкциях этих приспособлений.
Для чего нужно заземлять ЛЭП и подстанции
По большому счету, воздушная линия (ВЛ) представляет собой ряд столбов (опор), подвергающемуся воздействию природных факторов, таких как перепады температур, атмосферные осадки, прямое воздействие солнечного ультрафиолета и прочих. Ввиду их влияния, могут изменяться свойства диэлектриков и происходить прямое касание токонесущих частей кабеля с опорой. Кроме прочего, нередки кратковременные скачки напряжения в линии со значительным превышением номинального (допустимого) значения, что может приводить к замыканию между кабелем и конструкционными элементами опоры.
При прикосновении к такому столбу человек может получить травму и даже умереть. Поэтому установка заземления на воздушной линии отнюдь не относится к разряду рекомендаций или прихотей органов контроля. Это продиктовано правилами устройства электроустановок (ПУЭ) как основным нормативным документом, регламентирующим требования к энергосистемам, в том числе ВЛ. Согласно этому документу, заземляющие устройства опор воздушных линий обязательны.
Особняком стоит вопрос молниезащиты конструкций. Опоры могут быть выполнены из дерева, железобетона или стали. Для стоящих в чистом поле опор, порой, имеющих весьма значительную высоту, попадание молнии отнюдь не редкое явление. Если для стали или железобетона, имеющих хорошую электропроводность и неспособных к горению, это не принесет серьезных повреждений, то для деревянной конструкции чревато разрушением или воспламенением. Учитывая колоссальное напряжение разряда молнии, возможно разрушение диэлектриков, ограждающих конструкционные элементы от токонесущих частей ВЛ, что, в свою очередь, приводит к аварии.
Все это в равной степени относится и к подстанциям. До сих пор некоторые из них представляют собой большой трансформатор посреди поля, питающий ферму, например. Трансформаторные установки подвержены всем негативным воздействиям, что и ВЛ. Даже если это не так, они должны соответствовать требованиям ПУЭ.
Оборудованная же устройством заземления мачта или подстанция ведет себя иначе. Весь заряд, попавший на опору, стечет на землю, учитывая низкое ее сопротивление и огромную емкость. Это значит, что конструкция не будет находиться под напряжением и будет безопасна для жизни и здоровья людей.
Основные требования
Согласно требованиям ПУЭ, практически каждая опора должна иметь заземляющее устройство. Оно необходимо для предотвращения перенапряжения атмосферного характера (молния), защиты электрооборудования, размещенного на мачте, а также реализации повторного заземления. Его сопротивление при этом не должно превышать 30 Ом. Причем громоотводы и подобные устройства, должны соединяться с заземлителем отдельным проводником. Кроме прочего, обязательному заземлению подлежат растяжки, устанавливаемые для устойчивости опоры, если они присутствуют в ее конструкции. Все межсоединения, провода снижения и заземлителя, например, предпочтительно выполнять сваркой, а, за неимением возможности, скручиваться болтами. Все части заземляющего устройства должны быть выполнены из стали диаметром не менее 6 мм. Сам проводник и места стыковок должны иметь антикоррозийное покрытие. Обычно это стальная оцинкованная проволока соответствующего диаметра.
Железобетонные столбы
Устройство заземления ВЛ зависит от материала опор. В случае железобетонной конструкции все выступающие сверху и снизу элементы арматуры должны быть присоединены к PEN-проводнику (нулевая шина), который впоследствии играет роль заземления. К нему же следует присоединить крюки, кронштейны и другие металлоконструкции, находящиеся на опоре. Все это в равной степени относится и к металлическим мачтам ВЛ.
Деревянные столбы
С деревянными опорами ВЛ дело обстоит несколько иначе. Ввиду диэлектрических свойств древесины, каждая из мачт не нуждается в отдельном устройстве заземления. Оно устанавливается лишь при наличии на мачте молниеотвода или повторного заземления. Кроме того, металлическая оболочка кабеля соединяется с PEN-шиной линии в местах перехода ВЛ в кабельную линию.
Малоэтажная застройка
Все виды опор должны быть оборудованы устройствами заземления, если речь идет о населенных пунктах с малоэтажной застройкой (1 или 2 этажа).
Расстояние между такими мачтами зависит от среднегодового значения часов, в которые случается гроза. Если эта величина не превышает 40, то промежутки между опорами с громоотводами должны составлять менее 200 м. В противном случае это расстояние сокращается до 100 м. Кроме того, обязательному заземлению подлежат опоры, представляющие ветвление от ВЛ к объектам с потенциально массовым скоплением людей, клубы или дома культуры, например.
Установка заземлителей
Заземление ВЛ осуществляется вертикальными или горизонтальными заземлителями. В первом случае это стальные штыри, закопанные или забитые в землю, а во втором представляют собой полосы металла, расположенные параллельно земле под ее поверхностью. Последний вариант применяют для грунта с высоким удельным сопротивлением. После закапывания контура землю трамбуют для обеспечения лучшего ее контакта с металлом. Затем производится измерение сопротивления у заземления опор ВЛ. Оно является произведением значения, полученного прямым измерением, на коэффициент, зависящий от типа и размера заземлителя, а также климатической зоны (есть специальные таблицы).
Особенности подстанций
Все ранее описанное относится и к подстанциям, несмотря на то, что они находятся под крышей. Исключение составляет лишь то, что там довольно часто или постоянно находятся люди, а, следовательно, к их заземлению предъявляются особые требования.
В общем случае заземление подстанции состоит из следующих элементов:
- внутренний контур;
- внешний контур;
- устройство молниезащиты объекта.
Внутренний контур заземления подстанции обеспечивает простое и надежное соединение с землей всех устройств, находящихся внутри подстанции. Для этого по периметру всех помещений объекта на высоте 40 см от пола дюбелями закрепляют стальную полосу. Контуры всех помещений, а также и их составные части соединяются сваркой или резьбовыми соединениями, если таковые предусмотрены. Все металлические части, непредназначенные для прохождения тока (корпуса приборов, ограждения, люки и подобное тому), соединяются с этой шиной. Подобные полосы оснащаются резьбовыми соединениями с шайбами увеличенной ширины и гайками типа «барашек». Это позволяет получить надежное переносное заземление. Нулевая шина силового трансформатора, учитывая схему с глухозаземленной нейтралью, соединяется с полученным контуром.
Внешний контур
Внешний контур заземления также является замкнутым. Он представляет собой горизонтальный заземлитель из стальной полосы, связывающий определенное количество вертикальных штырей. Глубина залегания этой конструкции должна быть не менее 70 см от поверхности, причем полоска ставится ребром.
Требуется расположение устройства по периметру здания не превышая расстояния 1 м от его стен или фундаментной плиты. Общее сопротивление контура не может превышать 40 Ом, если удельное сопротивление почвы менее 1 кОм*м в соответствии с ПУЭ.
Если подстанция имеет металлическую крышу, то ее заземляют, соединив с внешним контуром стальной проволокой диаметром 8 мм. Соединение производится с двух сторон объекта, диаметрально противоположных между собой. Требования ПУЭ предписывают защитить эту шину снижения на внешней стене здания от коррозии и механических повреждений.
Расчет заземляющего устройства подстанции выполняется для определения сопротивления распространения тока системы в землю.
Эта величина зависит от характеристик грунта, габаритов и конструкции заземляющего устройства и других факторов. Методика достаточно объемна и требует особого рассмотрения. Но стоит отметить, что чаще всего идут от противного. Имея требуемое сопротивление и определенный сортамент стали, например, определяют габариты заземлителя, количество горизонтальных электродов и глубину залегания в известном типе грунта.
Заземляющие устройства подстанций или ВЛ, равно как и заземление электростанции, играют исключительно важную роль в их эксплуатации. Кроме обеспечения нормальной работы этих объектов, они обеспечивают безопасность здоровья и жизни для людей, их обслуживающих.